Continuous Pharmaceutical Manufacturing: from powder to tablet

Thomas De Beer
Thomas.DeBeer@UGent.be

Laboratory of Pharmaceutical Process Analytical Technology
Laboratory of Pharmaceutical Technology (Prof. Remon and Prof. Vervaet)

Faculty of Pharmaceutical Sciences, Ghent University, Belgium
BACKGROUND

Health sector is facing major challenges in Europe: Population ageing creates need for

- new type of medicines
- more medication per capita
- more personalized and targeted medicinal products
CHALLENGES

- increasing financial pressure to keep up the standards of the European public health system

- competition from generic pharmaceutical companies (public health care system will benefit from efficient and low-cost medication)

- Increasing interest to outsource activities into low-cost countries + more and more R&D activities to Asian countries
CHALLENGES

- number of new molecules reaching the market ↓
- not enough new blockbuster molecules in pipelines of European pharma

 optimize the few new molecules + maximize value of already existing ones + streamline related dosage form design and manufacturing
- new molecules are larger and more challenging from processing point of view

European pharmaceutical sector with long and successful history is close to a most severe crisis during its existence

Europe must focus on building up the future technologies
“The pharmaceutical industry has a little secret: Even as it invents futuristic new drugs, its manufacturing techniques lag far behind those of potato-chip and laundry-soap makers.”

Wall Street Journal (Sep 3, 2003)

- still partly applicable today

- manufacturing of pharmaceuticals is conservative and old-fashioned field of engineering

- heavy documentation based regulatory structure ensuring the quality of the final product
INNOVATION IN PHARMACEUTICAL MANUFACTURING

CURRENT WAY OF MANUFACTURING

BATCH PROCESSING
- specific quantity of materials processed
- if quality is not met ➔ batch rejection

off-line quality control in QC lab
- sampling during each unit operation
- limited number of samples
- no real-time information
- no process understanding
- no real-time release

CONTINUOUS PROCESSING
a radically different system

- SYNTHESIS
- CRYSTALLIZATION
- BLEND-ING
- GRANULATION
- DRYING
- TABLET-ING
- COATING

Input Variable
- Fixed

Process
- Black - Box

Output
- [Waveform]
CONTINUOUS PROCESSING

A radically different system

- ‘one in, one out’- principle
- less scale-up issues
- lower cycle time
- faster release of manufactured goods

Process Analytical Technology (PAT)

- in-line / real-time quality control
- risk-based manufacturing
- improved process understanding
- increase of process efficiency
- real-time release possible
Continuous processing has major impact on:

- **workspace**
 - smaller systems
- less QC areas
- smaller warehouses (up to 65% reduction)
- **waste**: less batches rejected (up to 85% reduction)
- **manpower**: less personnel required in operations, maintenance, QA, logistics (up to 60% reduction)
- **operational costs** (up to 50% reduction)
A. API manufacturing

API manufacturing

several chemical reactions (e.g.; introduction of functional groups)

intermediates

downstream processing (filtration, distillation, ...)

final reaction mixture

downstream processing (multiple steps)

final API

unit operations:
- filtration
- distillation
- precipitation
- crystallisation
- drying
- milling

continuous:
- milling
- filtration
- distillation
B. Drug Product Manufacturing

Historically: conventional manufacturing = several unit operations

Each unit operation modulating certain material properties

BUT: some unit operations are continuous by design
Fully continuous: Collette Consigma system
granulation liquid

A: transport zones
B: kneading zones
Consigma: how does it work?
CONTINUOUS PRODUCTION PROJECT – Laboratory of Pharmaceutical Process Analytical Technology

1. PhD student Margot Fonteyne

- real-time monitoring of critical process and product parameters
 - interfacing of suitable sensors
- increasing the understanding of material behaviour in the process environment
derived from the data supplied by the process sensors

- in this presentation:
 - in-line monitoring of drying unit
 - prediction of critical quality attributes after drying

end product
1. In-line monitoring of drying unit

Formulation

- Anhydrous theophylline 30%
- Lactose 60.7%
- Polyvinylpyrrolidone 2.5%

Granulation liquid:
- Aqueous solution of SodiumLaurylSulfate 0.5% (w/v)

IN LINE MONITORING –

FEED-BACK & FEED-FORWARD CONTROL

TO THE MARKET
Raman spectroscopy
solid state changes of theophylline
NIR Spectroscopy
in-line moisture content
First experiment

15 different drying runs with varied
- drying time
- drying air temperature
- drying air flow

different moisture contents at the end of the run

after each run:

20 NIR-spectra

Karl-Fisher Moisture Determination

PLS-model
* 6 drying experiments
* 30° - 40° - 50° - 60° - 70° - 80° C
* in-line monitored NIR-spectra
* NIR-Spectra → PLS-model → moisture content prediction

![Graph showing moisture content over drying time with Karl Fisher result after drying at 12.5 min.]
1. In-line monitoring of drying unit

12.5 min
2. prediction of granule properties after drying based on in-line measurements

Methods

- Continuous twin-screw wet granulation and continuous drying

Formulation

- Anhydrous theophylline 30%
- Lactose 60.7%
- Polyvinylpyrrolidone 2.5%

Granulation liquid:

- Aqueous solution of SodiumLaurylSulfate 0.5% (w/v)

Experimental design

- Two-level full factorial design

<table>
<thead>
<tr>
<th>Run order</th>
<th>Barrel temperature (°C)</th>
<th>Powder feed rate (kg/h)</th>
<th>Drying temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>32,5</td>
<td>17,5</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>32,5</td>
<td>17,5</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>32,5</td>
<td>17,5</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>40</td>
<td>10</td>
<td>35</td>
</tr>
</tbody>
</table>

Factors/Process parameters:

- Barrel temperature
- Powder feed rate
- Drying temperature

Granules in-line measured using:
- Flashsizer (size and shape)
- Raman
- NIR
Methods

In-line measurements
- **FlashSizer3D**
 - Roughness (shape)
 - d_{10}
 - d_{50}
 - d_{90}
- **NIR**
 - 4500 – 10000 cm$^{-1}$
 - Mean-centering and SNV pre-processing
 - PCA
- **Raman**
 - 100 – 1800 cm$^{-1}$
 - Mean-centering and SNV pre-processing
 - PCA

Off-line measurements
1. **Moisture content**
 - Karl Fischer titration
2. **Bulk and tapped density**
 - PhEur
 - To calculate Compressibility index (CI) and Hausner ratio (HR)
3. **Flowability**
 - PhEur
4. **Angle of repose**
 - PhEur

Flowability
- 11 granulation runs
- Flowability
- Bulk and tapped density
- Karl Fischer titration
- PhEur
- Compressibility index (CI) and Hausner ratio (HR)
- Angle of repose
- PhEur
REAL-TIME DATA PROCESSING

- Temp
- Pressure
- Speed
- RM Attribute 1
- RM Attribute 2
- NIR
- Raman
- WTC

Quantitative result

Qualitative result

SIEMENS

SIEMENS
RESULTS AND DISCUSSION

X-variables

<table>
<thead>
<tr>
<th>NIR</th>
<th>Raman</th>
<th>FlashSizer3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>PC1</td>
<td>Roughness</td>
</tr>
<tr>
<td>PC2</td>
<td>PC2</td>
<td>d10</td>
</tr>
<tr>
<td>PC3</td>
<td>PC3</td>
<td>d50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d90</td>
</tr>
</tbody>
</table>

- **NIR**
 - PC1 74.70%
 - PC2 16.09%
 - PC3 5.07%

- **Raman**
 - PC1 39.81%
 - PC2 25.06%
 - PC3 18.47%

- **FlashSizer3D**

<table>
<thead>
<tr>
<th>Roughness</th>
<th>d10</th>
<th>d50</th>
<th>d90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressibility Index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hausner ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle of repose</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **PLS**

 - PC1 74.70%
 - PC2 16.09%
 - PC3 5.07%

- **Responses**

<table>
<thead>
<tr>
<th>Roughness</th>
<th>d10</th>
<th>d50</th>
<th>d90</th>
</tr>
</thead>
<tbody>
<tr>
<td>35,20889</td>
<td>169,1111</td>
<td>373,1111</td>
<td>649,7778</td>
</tr>
<tr>
<td>59,77333</td>
<td>468,2222</td>
<td>379,8889</td>
<td>1495,111</td>
</tr>
<tr>
<td>37,98778</td>
<td>273,5556</td>
<td>621,2222</td>
<td>1007,556</td>
</tr>
<tr>
<td>46,91111</td>
<td>35,20889</td>
<td>169,1111</td>
<td>373,1111</td>
</tr>
<tr>
<td>58,83444</td>
<td>513,6667</td>
<td>1047,333</td>
<td>1555,333</td>
</tr>
<tr>
<td>48,42</td>
<td>332,7778</td>
<td>764,7778</td>
<td>1194</td>
</tr>
<tr>
<td>69,52333</td>
<td>508,5556</td>
<td>1053,667</td>
<td>1596</td>
</tr>
<tr>
<td>69,89111</td>
<td>567,4444</td>
<td>1213,333</td>
<td>1812,444</td>
</tr>
<tr>
<td>52,74</td>
<td>310,5</td>
<td>670,9444</td>
<td>1078,444</td>
</tr>
<tr>
<td>65,10111</td>
<td>527,3333</td>
<td>1102,333</td>
<td>1663,222</td>
</tr>
<tr>
<td>43,1</td>
<td>263,7778</td>
<td>650</td>
<td>1037,222</td>
</tr>
</tbody>
</table>

- **PLS**

 - PC1 74.70%
 - PC2 16.09%
 - PC3 5.07%

- **Responses**

<table>
<thead>
<tr>
<th>Roughness</th>
<th>d10</th>
<th>d50</th>
<th>d90</th>
</tr>
</thead>
<tbody>
<tr>
<td>35,20889</td>
<td>169,1111</td>
<td>373,1111</td>
<td>649,7778</td>
</tr>
<tr>
<td>59,77333</td>
<td>468,2222</td>
<td>379,8889</td>
<td>1495,111</td>
</tr>
<tr>
<td>37,98778</td>
<td>273,5556</td>
<td>621,2222</td>
<td>1007,556</td>
</tr>
<tr>
<td>46,91111</td>
<td>35,20889</td>
<td>169,1111</td>
<td>373,1111</td>
</tr>
<tr>
<td>58,83444</td>
<td>513,6667</td>
<td>1047,333</td>
<td>1555,333</td>
</tr>
<tr>
<td>48,42</td>
<td>332,7778</td>
<td>764,7778</td>
<td>1194</td>
</tr>
<tr>
<td>69,52333</td>
<td>508,5556</td>
<td>1053,667</td>
<td>1596</td>
</tr>
<tr>
<td>69,89111</td>
<td>567,4444</td>
<td>1213,333</td>
<td>1812,444</td>
</tr>
<tr>
<td>52,74</td>
<td>310,5</td>
<td>670,9444</td>
<td>1078,444</td>
</tr>
<tr>
<td>65,10111</td>
<td>527,3333</td>
<td>1102,333</td>
<td>1663,222</td>
</tr>
<tr>
<td>43,1</td>
<td>263,7778</td>
<td>650</td>
<td>1037,222</td>
</tr>
</tbody>
</table>

- **PLS**

 - PC1 74.70%
 - PC2 16.09%
 - PC3 5.07%

- **Responses**

<table>
<thead>
<tr>
<th>Roughness</th>
<th>d10</th>
<th>d50</th>
<th>d90</th>
</tr>
</thead>
<tbody>
<tr>
<td>35,20889</td>
<td>169,1111</td>
<td>373,1111</td>
<td>649,7778</td>
</tr>
<tr>
<td>59,77333</td>
<td>468,2222</td>
<td>379,8889</td>
<td>1495,111</td>
</tr>
<tr>
<td>37,98778</td>
<td>273,5556</td>
<td>621,2222</td>
<td>1007,556</td>
</tr>
<tr>
<td>46,91111</td>
<td>35,20889</td>
<td>169,1111</td>
<td>373,1111</td>
</tr>
<tr>
<td>58,83444</td>
<td>513,6667</td>
<td>1047,333</td>
<td>1555,333</td>
</tr>
<tr>
<td>48,42</td>
<td>332,7778</td>
<td>764,7778</td>
<td>1194</td>
</tr>
<tr>
<td>69,52333</td>
<td>508,5556</td>
<td>1053,667</td>
<td>1596</td>
</tr>
<tr>
<td>69,89111</td>
<td>567,4444</td>
<td>1213,333</td>
<td>1812,444</td>
</tr>
<tr>
<td>52,74</td>
<td>310,5</td>
<td>670,9444</td>
<td>1078,444</td>
</tr>
<tr>
<td>65,10111</td>
<td>527,3333</td>
<td>1102,333</td>
<td>1663,222</td>
</tr>
<tr>
<td>43,1</td>
<td>263,7778</td>
<td>650</td>
<td>1037,222</td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

MC = moisture content
CI = compressability index
HR = Hausner ratio
Flow = flowability
AR = angle of repose

summary of predictive abilities of the PLS model (2 PLS components)
Imaging (Flashsizer): size and shape information

samples are imaged through a glass window

2 light sources, placed 180° from each other in horizontal plane

FlashSizer 3D

current process imaging system facts:
 • pixel resolution 10 um
 • image area 1.2x1.6 cm
 • optimal size range 50-2000um
 • 5-20 images/sec
 • calculations ~50ms
Combination of 2 images for 3D visualization and PS data extraction:
RESULTS AND DISCUSSION

SAMPLING ISSUES: FLASHSIZER3D

Examples

Run 9 t1
Run 9 t2
Run 11 t1
Run 11 t2

Same sample / different time of measurement or different sample points

Difficult sampling

- Finer granules are retained in the first layer
- Larger granules are hidden
2. PhD student Séverine Mortier

- development and validation of mechanistic models based on physical and chemical patterns increase the fundamental process knowledge
- better understanding of process and product parameters upon process progress and product quality
- process control
- process simulations

- *in this presentation*: drying behaviour of continuously produced wet granules
Drying of pharmaceutical granules

1. Fast drying period

\[\dot{m}_v = h_D (\rho_{v,s} - \rho_{v,\infty}) A_d \]

\(h_D \) = mass transfer coefficient, \(\rho_{v,s} \) = partial vapour density over the droplet surface, \(\rho_{v,\infty} \) = partial vapour density in the ambient, \(A_d \) = surface area of droplet

2. Slow drying period

\[\dot{m}_v = -\frac{8\pi \varepsilon \beta D_{v,cr} M_w p_g}{\Re (T_{cr,s} + T_{wc,s})} \ln \left[\frac{p_g - p_{v,i}}{p_g - \left(\frac{\Re}{4\pi M_w h_D R_p^2} \dot{m}_v + \frac{p_{v,\infty}}{T_g} \right) T_{p,s}} \right] \]

\(\varepsilon \) = crust porosity, \(\beta \) = power coefficient, \(D_{v,cr} \) = vapour diffusion coefficient (crust pores), \(M_w \) = molecular weight of the liquid, \(p_g \) = pressure of drying agent, \(T_{cr,s} \) and \(T_{wc,s} \) = temperature of crust outer surface and of the crust-wet core interface, \(p_{v,i} \) and \(p_{v,\infty} \) = partial vapour pressure at the crust-wet core interface and in the ambient, \(h_D \) = mass transfer coefficient, \(R_p \) = particle radius

First drying period: weakly bound water
Second drying period: strongly bound water
Validation

3 independent drying experiments at 3 different drying temperatures

45° C

55° C

65° C

- Modelprediction: Linear
- Modelprediction: Quadratic
- Modelprediction: Exponential
- Experimental data: first drying period
- Experimental data: second drying period
3. CONCLUSIONS AND FUTURE PERSPECTIVES

- manufacturing of dosage forms will radically change in the upcoming years

- there is an urgent need to improve efficiency and productivity within the drug manufacturing area

- there is an urgent need to employ innovation and cutting edge formulation, engineering and scientific know-how to respond to those manufacturing challenges

- continuous pharmaceutical manufacturing may offer pharma industry a chance to remain productive, profitable and able to meet global competitive challenges

- if we want to keep pharma manufacturing industry in Europe alive, it is urgent that industrial partners and academics join efforts in order to meet the challenges of the future
Acknowledgements

A. Burggraeve, L. Saerens, M. Fonteyne, S. Mortier, L. Hansen, T. Monteyne
PAT Research Group, Dept. of Pharmaceutical Analysis, Ghent University, Belgium

Prof. Dr. J.P. Remon, Prof. Dr. C. Vervaet
Laboratory of Pharmaceutical Technology, Dept. of Pharmaceutical Technology, Ghent University, Ghent, Belgium